Filtros : "Green Chemistry" Limpar

Filtros



Refine with date range


  • Source: Green Chemistry. Unidade: IQSC

    Subjects: QUÍMICA AMBIENTAL, SUSTENTABILIDADE, POLIMERIZAÇÃO, DENDÊ

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ALARCON, Rafael Turra et al. Greener preparation of a flexible material based on macaw palm oil derivatives and CO2. Green Chemistry, v. 26, p. 3261-3270, 2024Tradução . . Disponível em: https://doi.org/10.1039/D3GC03933A. Acesso em: 31 maio 2024.
    • APA

      Alarcon, R. T., Gaglieri, C., Bannach, G., & Cavalheiro, E. T. G. (2024). Greener preparation of a flexible material based on macaw palm oil derivatives and CO2. Green Chemistry, 26, 3261-3270. doi:10.1039/d3gc03933a
    • NLM

      Alarcon RT, Gaglieri C, Bannach G, Cavalheiro ETG. Greener preparation of a flexible material based on macaw palm oil derivatives and CO2 [Internet]. Green Chemistry. 2024 ; 26 3261-3270.[citado 2024 maio 31 ] Available from: https://doi.org/10.1039/D3GC03933A
    • Vancouver

      Alarcon RT, Gaglieri C, Bannach G, Cavalheiro ETG. Greener preparation of a flexible material based on macaw palm oil derivatives and CO2 [Internet]. Green Chemistry. 2024 ; 26 3261-3270.[citado 2024 maio 31 ] Available from: https://doi.org/10.1039/D3GC03933A
  • Source: Green Chemistry. Unidade: IQ

    Subjects: DESENVOLVIMENTO SUSTENTÁVEL, ELETROQUÍMICA

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CRAPNELL, Robert D et al. Utilising bio-based plasticiser castor oil and recycled PLA for the production of conductive additive manufacturing feedstock and detection of bisphenol A. Green Chemistry, v. 25, p. 5591-5600, 2023Tradução . . Disponível em: https://doi.org/10.1039/d3gc01700a. Acesso em: 31 maio 2024.
    • APA

      Crapnell, R. D., Arantes, I. V. S., Whittingham, M. J., Sigley, E., Kalinke, C., Janegitz, B. C., et al. (2023). Utilising bio-based plasticiser castor oil and recycled PLA for the production of conductive additive manufacturing feedstock and detection of bisphenol A. Green Chemistry, 25, 5591-5600. doi:10.1039/d3gc01700a
    • NLM

      Crapnell RD, Arantes IVS, Whittingham MJ, Sigley E, Kalinke C, Janegitz BC, Bonacin JA, Paixão TRLC da, Banks CE. Utilising bio-based plasticiser castor oil and recycled PLA for the production of conductive additive manufacturing feedstock and detection of bisphenol A [Internet]. Green Chemistry. 2023 ; 25 5591-5600.[citado 2024 maio 31 ] Available from: https://doi.org/10.1039/d3gc01700a
    • Vancouver

      Crapnell RD, Arantes IVS, Whittingham MJ, Sigley E, Kalinke C, Janegitz BC, Bonacin JA, Paixão TRLC da, Banks CE. Utilising bio-based plasticiser castor oil and recycled PLA for the production of conductive additive manufacturing feedstock and detection of bisphenol A [Internet]. Green Chemistry. 2023 ; 25 5591-5600.[citado 2024 maio 31 ] Available from: https://doi.org/10.1039/d3gc01700a
  • Source: Green Chemistry. Unidade: FCF

    Subjects: LÍQUIDOS IÔNICOS, SOLVENTE

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MUSSAGY, Cassamo U et al. Ionic liquids or eutectic solvents? Identifying the best solvents for the extraction of astaxanthin and β-carotene from Phaffia rhodozyma yeast and preparation of biodegradable films. Green Chemistry, v. 24, p. 118–123, 2022Tradução . . Disponível em: https://doi.org/10.1039/d1gc03521e. Acesso em: 31 maio 2024.
    • APA

      Mussagy, C. U., Ebinuma, V. de C. S., Herculano, R. D., Coutinho, J. A. P., Pereira, J. F. B., & Pessoa Junior, A. (2022). Ionic liquids or eutectic solvents? Identifying the best solvents for the extraction of astaxanthin and β-carotene from Phaffia rhodozyma yeast and preparation of biodegradable films. Green Chemistry, 24, 118–123. doi:10.1039/d1gc03521e
    • NLM

      Mussagy CU, Ebinuma V de CS, Herculano RD, Coutinho JAP, Pereira JFB, Pessoa Junior A. Ionic liquids or eutectic solvents? Identifying the best solvents for the extraction of astaxanthin and β-carotene from Phaffia rhodozyma yeast and preparation of biodegradable films [Internet]. Green Chemistry. 2022 ; 24 118–123.[citado 2024 maio 31 ] Available from: https://doi.org/10.1039/d1gc03521e
    • Vancouver

      Mussagy CU, Ebinuma V de CS, Herculano RD, Coutinho JAP, Pereira JFB, Pessoa Junior A. Ionic liquids or eutectic solvents? Identifying the best solvents for the extraction of astaxanthin and β-carotene from Phaffia rhodozyma yeast and preparation of biodegradable films [Internet]. Green Chemistry. 2022 ; 24 118–123.[citado 2024 maio 31 ] Available from: https://doi.org/10.1039/d1gc03521e
  • Source: Green Chemistry. Unidade: IQ

    Subjects: RESINAS, COMPOSTOS ORGÂNICOS, CATALISADORES

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      DIAS, Kevin de Aquino e PEREIRA JÚNIOR, Marcus Vinícius e ANDRADE, Leandro Helgueira. Benzoic acid resin (BAR): a heterogeneous redox organocatalyst for continuous flow synthesis of benzoquinones from β-O-4 lignin models. Green Chemistry, v. 23, p. 2308-2316 : + Supplementary materials ( S1-S32), 2021Tradução . . Disponível em: https://doi.org/10.1039/d0gc04231e. Acesso em: 31 maio 2024.
    • APA

      Dias, K. de A., Pereira Júnior, M. V., & Andrade, L. H. (2021). Benzoic acid resin (BAR): a heterogeneous redox organocatalyst for continuous flow synthesis of benzoquinones from β-O-4 lignin models. Green Chemistry, 23, 2308-2316 : + Supplementary materials ( S1-S32). doi:10.1039/d0gc04231e
    • NLM

      Dias K de A, Pereira Júnior MV, Andrade LH. Benzoic acid resin (BAR): a heterogeneous redox organocatalyst for continuous flow synthesis of benzoquinones from β-O-4 lignin models [Internet]. Green Chemistry. 2021 ; 23 2308-2316 : + Supplementary materials ( S1-S32).[citado 2024 maio 31 ] Available from: https://doi.org/10.1039/d0gc04231e
    • Vancouver

      Dias K de A, Pereira Júnior MV, Andrade LH. Benzoic acid resin (BAR): a heterogeneous redox organocatalyst for continuous flow synthesis of benzoquinones from β-O-4 lignin models [Internet]. Green Chemistry. 2021 ; 23 2308-2316 : + Supplementary materials ( S1-S32).[citado 2024 maio 31 ] Available from: https://doi.org/10.1039/d0gc04231e
  • Source: Green Chemistry. Unidade: FCF

    Subjects: ECOSSISTEMAS OCEÂNICOS, ECOSSISTEMAS AQUÁTICOS, QUÍMICA VERDE, SUSTENTABILIDADE

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      VERÍSSIMO, Nathalia Vieira et al. From green to blue economy: marine biorefineries for a sustainable ocean-based economy. Green Chemistry, v. 23, p. 9377–9400, 2021Tradução . . Disponível em: https://doi.org/10.1039/d1gc03191k. Acesso em: 31 maio 2024.
    • APA

      Veríssimo, N. V., Mussagy, C. U., Oshiro, A. A., Mendonça, C. M. N., Ebinuma, V. de C. S., Pessoa Junior, A., et al. (2021). From green to blue economy: marine biorefineries for a sustainable ocean-based economy. Green Chemistry, 23, 9377–9400. doi:10.1039/d1gc03191k
    • NLM

      Veríssimo NV, Mussagy CU, Oshiro AA, Mendonça CMN, Ebinuma V de CS, Pessoa Junior A, Oliveira RP de S, Pereira JFB. From green to blue economy: marine biorefineries for a sustainable ocean-based economy [Internet]. Green Chemistry. 2021 ; 23 9377–9400.[citado 2024 maio 31 ] Available from: https://doi.org/10.1039/d1gc03191k
    • Vancouver

      Veríssimo NV, Mussagy CU, Oshiro AA, Mendonça CMN, Ebinuma V de CS, Pessoa Junior A, Oliveira RP de S, Pereira JFB. From green to blue economy: marine biorefineries for a sustainable ocean-based economy [Internet]. Green Chemistry. 2021 ; 23 9377–9400.[citado 2024 maio 31 ] Available from: https://doi.org/10.1039/d1gc03191k
  • Source: Green Chemistry. Unidade: IQ

    Subjects: CATALISADORES, OURO, OXIDAÇÃO, BIOMASSA

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FERRAZ, Camila Palombo et al. Enhancing the activity of gold supported catalysts by oxide coating: towards efficient oxidations. Green Chemistry, v. 23, p. 8453–8457, 2021Tradução . . Disponível em: https://doi.org/10.1039/d1gc02889h. Acesso em: 31 maio 2024.
    • APA

      Ferraz, C. P., Jaén, S. N., Rossi, L. M., Dumeignil, F., Ghazzal, M. N., & Wojcieszak, R. (2021). Enhancing the activity of gold supported catalysts by oxide coating: towards efficient oxidations. Green Chemistry, 23, 8453–8457. doi:10.1039/d1gc02889h
    • NLM

      Ferraz CP, Jaén SN, Rossi LM, Dumeignil F, Ghazzal MN, Wojcieszak R. Enhancing the activity of gold supported catalysts by oxide coating: towards efficient oxidations [Internet]. Green Chemistry. 2021 ; 23 8453–8457.[citado 2024 maio 31 ] Available from: https://doi.org/10.1039/d1gc02889h
    • Vancouver

      Ferraz CP, Jaén SN, Rossi LM, Dumeignil F, Ghazzal MN, Wojcieszak R. Enhancing the activity of gold supported catalysts by oxide coating: towards efficient oxidations [Internet]. Green Chemistry. 2021 ; 23 8453–8457.[citado 2024 maio 31 ] Available from: https://doi.org/10.1039/d1gc02889h
  • Source: Green Chemistry. Unidade: FCF

    Subjects: QUÍMICA VERDE, BIODISPONIBILIDADE

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SANTOS, João Henrique Picado Madalena et al. Continuous separation of cytochrome-c PEGylated conjugates by fast centrifugal partition chromatography. Green Chemistry, v. 21, n. 20, p. 5501-5506, 2019Tradução . . Disponível em: https://doi.org/10.1039/c9gc01063g. Acesso em: 31 maio 2024.
    • APA

      Santos, J. H. P. M., Ferreira, A. M., Almeida, M. R., Quinteiro, P. S. G. N., Dias, A. C. R. V., Coutinho, J. A. P., et al. (2019). Continuous separation of cytochrome-c PEGylated conjugates by fast centrifugal partition chromatography. Green Chemistry, 21( 20), 5501-5506. doi:10.1039/c9gc01063g
    • NLM

      Santos JHPM, Ferreira AM, Almeida MR, Quinteiro PSGN, Dias ACRV, Coutinho JAP, Freire MG, Rangel-Yagui C de O, Ventura SPM. Continuous separation of cytochrome-c PEGylated conjugates by fast centrifugal partition chromatography [Internet]. Green Chemistry. 2019 ; 21( 20): 5501-5506.[citado 2024 maio 31 ] Available from: https://doi.org/10.1039/c9gc01063g
    • Vancouver

      Santos JHPM, Ferreira AM, Almeida MR, Quinteiro PSGN, Dias ACRV, Coutinho JAP, Freire MG, Rangel-Yagui C de O, Ventura SPM. Continuous separation of cytochrome-c PEGylated conjugates by fast centrifugal partition chromatography [Internet]. Green Chemistry. 2019 ; 21( 20): 5501-5506.[citado 2024 maio 31 ] Available from: https://doi.org/10.1039/c9gc01063g
  • Source: Green Chemistry. Unidade: IFSC

    Subjects: SUSTENTABILIDADE, IMPACTOS AMBIENTAIS, HERBICIDAS, AGRICULTURA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARVALHO JUNIOR, Paulo S. et al. Highly water soluble agrichemicals by using engineered organic salts for reducing adverse environmental impacts. Green Chemistry, v. 21, n. 23, p. 6419-6429, 2019Tradução . . Disponível em: https://doi.org/10.1039/c9gc02439e. Acesso em: 31 maio 2024.
    • APA

      Carvalho Junior, P. S., Guimarães, G. G. F., Diniz, L. F., Ellena, J., & Oliveira, C. R. (2019). Highly water soluble agrichemicals by using engineered organic salts for reducing adverse environmental impacts. Green Chemistry, 21( 23), 6419-6429. doi:10.1039/c9gc02439e
    • NLM

      Carvalho Junior PS, Guimarães GGF, Diniz LF, Ellena J, Oliveira CR. Highly water soluble agrichemicals by using engineered organic salts for reducing adverse environmental impacts [Internet]. Green Chemistry. 2019 ; 21( 23): 6419-6429.[citado 2024 maio 31 ] Available from: https://doi.org/10.1039/c9gc02439e
    • Vancouver

      Carvalho Junior PS, Guimarães GGF, Diniz LF, Ellena J, Oliveira CR. Highly water soluble agrichemicals by using engineered organic salts for reducing adverse environmental impacts [Internet]. Green Chemistry. 2019 ; 21( 23): 6419-6429.[citado 2024 maio 31 ] Available from: https://doi.org/10.1039/c9gc02439e
  • Source: Green Chemistry. Unidade: FZEA

    Subjects: DIGESTÃO ANAERÓBIA, CARVÃO ATIVADO, OZÔNIO

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SI, Buchun et al. Anaerobic conversion of the hydrothermal liquefaction aqueous phase: fate of organics and intensification with granule activated carbon/ozone pretreatment. Green Chemistry, v. 21, n. 6, p. 1305-1318, 2019Tradução . . Disponível em: https://doi.org/10.1039/C8GC02907E. Acesso em: 31 maio 2024.
    • APA

      Si, B., Yang, L., Zhou, X., Watson, J., Tommaso, G., Chen, W. -T., et al. (2019). Anaerobic conversion of the hydrothermal liquefaction aqueous phase: fate of organics and intensification with granule activated carbon/ozone pretreatment. Green Chemistry, 21( 6), 1305-1318. doi:10.1039/C8GC02907E
    • NLM

      Si B, Yang L, Zhou X, Watson J, Tommaso G, Chen W-T, Liao Q, Duan N, Liu Z, Zhang Y. Anaerobic conversion of the hydrothermal liquefaction aqueous phase: fate of organics and intensification with granule activated carbon/ozone pretreatment [Internet]. Green Chemistry. 2019 ; 21( 6): 1305-1318.[citado 2024 maio 31 ] Available from: https://doi.org/10.1039/C8GC02907E
    • Vancouver

      Si B, Yang L, Zhou X, Watson J, Tommaso G, Chen W-T, Liao Q, Duan N, Liu Z, Zhang Y. Anaerobic conversion of the hydrothermal liquefaction aqueous phase: fate of organics and intensification with granule activated carbon/ozone pretreatment [Internet]. Green Chemistry. 2019 ; 21( 6): 1305-1318.[citado 2024 maio 31 ] Available from: https://doi.org/10.1039/C8GC02907E
  • Source: Green Chemistry. Unidade: IQSC

    Subjects: QUÍMICA VERDE, BIOMASSA

    PrivadoAcesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SANTOS, Camila et al. Synthesis of long-chain polyols from the Claisen condensation of γ-valerolactone. Green Chemistry, v. 21, p. 6441-6450, 2019Tradução . . Disponível em: https://doi.org/10.1039/c9gc03343b. Acesso em: 31 maio 2024.
    • APA

      Santos, C., Soares, C. C. dos S. P., Vieira, A. S., & Burtoloso, A. C. B. (2019). Synthesis of long-chain polyols from the Claisen condensation of γ-valerolactone. Green Chemistry, 21, 6441-6450. doi:10.1039/c9gc03343b
    • NLM

      Santos C, Soares CC dos SP, Vieira AS, Burtoloso ACB. Synthesis of long-chain polyols from the Claisen condensation of γ-valerolactone [Internet]. Green Chemistry. 2019 ; 21 6441-6450.[citado 2024 maio 31 ] Available from: https://doi.org/10.1039/c9gc03343b
    • Vancouver

      Santos C, Soares CC dos SP, Vieira AS, Burtoloso ACB. Synthesis of long-chain polyols from the Claisen condensation of γ-valerolactone [Internet]. Green Chemistry. 2019 ; 21 6441-6450.[citado 2024 maio 31 ] Available from: https://doi.org/10.1039/c9gc03343b
  • Source: Green Chemistry. Unidades: FCF, IQ

    Subjects: PROTEÍNAS, QUÍMICA VERDE

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SANTOS, João Henrique Picado Madalena et al. An integrated process combining the reaction and purification of PEGylated proteins. Green Chemistry, v. 21, n. 23, p. 6407-6418, 2019Tradução . . Disponível em: https://doi.org/10.1039/c9gc01459d. Acesso em: 31 maio 2024.
    • APA

      Santos, J. H. P. M., Mendonça, C. M. N., Silva, A. R. P. da, Oliveira, R. P. de S., Pessoa Junior, A., Coutinho, J. M. da C. e A. P., et al. (2019). An integrated process combining the reaction and purification of PEGylated proteins. Green Chemistry, 21( 23), 6407-6418. doi:10.1039/c9gc01459d
    • NLM

      Santos JHPM, Mendonça CMN, Silva ARP da, Oliveira RP de S, Pessoa Junior A, Coutinho JM da C e AP, Ventura SPM, Rangel-Yagui C de O. An integrated process combining the reaction and purification of PEGylated proteins [Internet]. Green Chemistry. 2019 ; 21( 23): 6407-6418.[citado 2024 maio 31 ] Available from: https://doi.org/10.1039/c9gc01459d
    • Vancouver

      Santos JHPM, Mendonça CMN, Silva ARP da, Oliveira RP de S, Pessoa Junior A, Coutinho JM da C e AP, Ventura SPM, Rangel-Yagui C de O. An integrated process combining the reaction and purification of PEGylated proteins [Internet]. Green Chemistry. 2019 ; 21( 23): 6407-6418.[citado 2024 maio 31 ] Available from: https://doi.org/10.1039/c9gc01459d
  • Source: Green Chemistry. Unidade: IQSC

    Subjects: QUÍMICA ORGÂNICA, SÍNTESE ORGÂNICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GALLO, Rafael D. C e BURTOLOSO, Antonio Carlos Bender. Silica-supported HClO4 promotes catalytic solvent- and metal-free O-H insertion reactions with diazo compounds. Green Chemistry, v. 20, p. 4547-4556, 2018Tradução . . Disponível em: https://doi.org/10.1039/C8GC02574F. Acesso em: 31 maio 2024.
    • APA

      Gallo, R. D. C., & Burtoloso, A. C. B. (2018). Silica-supported HClO4 promotes catalytic solvent- and metal-free O-H insertion reactions with diazo compounds. Green Chemistry, 20, 4547-4556. doi:10.1039/C8GC02574F
    • NLM

      Gallo RDC, Burtoloso ACB. Silica-supported HClO4 promotes catalytic solvent- and metal-free O-H insertion reactions with diazo compounds [Internet]. Green Chemistry. 2018 ;20 4547-4556.[citado 2024 maio 31 ] Available from: https://doi.org/10.1039/C8GC02574F
    • Vancouver

      Gallo RDC, Burtoloso ACB. Silica-supported HClO4 promotes catalytic solvent- and metal-free O-H insertion reactions with diazo compounds [Internet]. Green Chemistry. 2018 ;20 4547-4556.[citado 2024 maio 31 ] Available from: https://doi.org/10.1039/C8GC02574F
  • Source: Green Chemistry. Unidade: FCF

    Subjects: PROTEÍNAS, EXTRAÇÃO DE LÍQUIDOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SANTOS, João Henrique Picado Madalena et al. Multistep purification of cytochrome c PEGylated forms using polymer-based aqueous biphasic systems. Green Chemistry, v. 19, p. 5800-5808, 2017Tradução . . Disponível em: https://doi.org/10.1039/c7gc02600e. Acesso em: 31 maio 2024.
    • APA

      Santos, J. H. P. M., Carretero, G. P. B., Coutinho, J. A. P., Rangel-Yagui, C. de O., & Ventura, S. P. M. (2017). Multistep purification of cytochrome c PEGylated forms using polymer-based aqueous biphasic systems. Green Chemistry, 19, 5800-5808. doi:10.1039/c7gc02600e
    • NLM

      Santos JHPM, Carretero GPB, Coutinho JAP, Rangel-Yagui C de O, Ventura SPM. Multistep purification of cytochrome c PEGylated forms using polymer-based aqueous biphasic systems [Internet]. Green Chemistry. 2017 ; 19 5800-5808.[citado 2024 maio 31 ] Available from: https://doi.org/10.1039/c7gc02600e
    • Vancouver

      Santos JHPM, Carretero GPB, Coutinho JAP, Rangel-Yagui C de O, Ventura SPM. Multistep purification of cytochrome c PEGylated forms using polymer-based aqueous biphasic systems [Internet]. Green Chemistry. 2017 ; 19 5800-5808.[citado 2024 maio 31 ] Available from: https://doi.org/10.1039/c7gc02600e
  • Source: Green Chemistry. Unidade: IQ

    Assunto: NANOTECNOLOGIA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      TOMA, Henrique Eisi. Magnetic nanohydrometallurgy: a nanotechnological approach to elemental sustainability. Green Chemistry, v. 17, n. 4, p. 2027-2041, 2015Tradução . . Disponível em: https://doi.org/10.1039/c5gc00066a. Acesso em: 31 maio 2024.
    • APA

      Toma, H. E. (2015). Magnetic nanohydrometallurgy: a nanotechnological approach to elemental sustainability. Green Chemistry, 17( 4), 2027-2041. doi:10.1039/c5gc00066a
    • NLM

      Toma HE. Magnetic nanohydrometallurgy: a nanotechnological approach to elemental sustainability [Internet]. Green Chemistry. 2015 ; 17( 4): 2027-2041.[citado 2024 maio 31 ] Available from: https://doi.org/10.1039/c5gc00066a
    • Vancouver

      Toma HE. Magnetic nanohydrometallurgy: a nanotechnological approach to elemental sustainability [Internet]. Green Chemistry. 2015 ; 17( 4): 2027-2041.[citado 2024 maio 31 ] Available from: https://doi.org/10.1039/c5gc00066a
  • Source: Green Chemistry. Unidade: IQ

    Subjects: NANOPARTÍCULAS, NANOTECNOLOGIA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ROSSI, Liane Marcia et al. Magnetic nanomaterials in catalysis: advanced catalysts for magnetic separation and beyond. Green Chemistry, v. 16, n. 6, p. 2906-2933, 2014Tradução . . Disponível em: https://doi.org/10.1039/c4gc00164h. Acesso em: 31 maio 2024.
    • APA

      Rossi, L. M., Costa, N. de J. da S., Silva, F. P. da, & Wojcieszak, R. (2014). Magnetic nanomaterials in catalysis: advanced catalysts for magnetic separation and beyond. Green Chemistry, 16( 6), 2906-2933. doi:10.1039/c4gc00164h
    • NLM

      Rossi LM, Costa N de J da S, Silva FP da, Wojcieszak R. Magnetic nanomaterials in catalysis: advanced catalysts for magnetic separation and beyond [Internet]. Green Chemistry. 2014 ; 16( 6): 2906-2933.[citado 2024 maio 31 ] Available from: https://doi.org/10.1039/c4gc00164h
    • Vancouver

      Rossi LM, Costa N de J da S, Silva FP da, Wojcieszak R. Magnetic nanomaterials in catalysis: advanced catalysts for magnetic separation and beyond [Internet]. Green Chemistry. 2014 ; 16( 6): 2906-2933.[citado 2024 maio 31 ] Available from: https://doi.org/10.1039/c4gc00164h
  • Source: Green Chemistry. Unidade: ESALQ

    Subjects: CELULOSE, FERMENTAÇÃO, HIDRÓLISE, INIBIDORES QUÍMICOS, LIGNINA, MEMBRANAS DE SEPARAÇÃO, POLÍMEROS (QUÍMICA ORGÂNICA), QUÍMICA VERDE, SACCHAROMYCES

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GREER, Douglas R et al. Fermentation of hydrolysate detoxified by pervaporation through block copolymer membranes. Green Chemistry, v. 16, p. 4206-4213, 2014Tradução . . Disponível em: https://doi.org/10.1039/c4gc00756e. Acesso em: 31 maio 2024.
    • APA

      Greer, D. R., Basso, T. P., Ibanez, A. B., Bauer, S., Skerker, J. M., Ozcam, A. E., et al. (2014). Fermentation of hydrolysate detoxified by pervaporation through block copolymer membranes. Green Chemistry, 16, 4206-4213. doi:10.1039/c4gc00756e
    • NLM

      Greer DR, Basso TP, Ibanez AB, Bauer S, Skerker JM, Ozcam AE, Leon D, Shin C, Arkin AP, Balsara NP. Fermentation of hydrolysate detoxified by pervaporation through block copolymer membranes [Internet]. Green Chemistry. 2014 ; 16 4206-4213.[citado 2024 maio 31 ] Available from: https://doi.org/10.1039/c4gc00756e
    • Vancouver

      Greer DR, Basso TP, Ibanez AB, Bauer S, Skerker JM, Ozcam AE, Leon D, Shin C, Arkin AP, Balsara NP. Fermentation of hydrolysate detoxified by pervaporation through block copolymer membranes [Internet]. Green Chemistry. 2014 ; 16 4206-4213.[citado 2024 maio 31 ] Available from: https://doi.org/10.1039/c4gc00756e
  • Source: Green Chemistry. Unidade: IQ

    Subjects: HIDROGENAÇÃO, QUÍMICA INORGÂNICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      UBERMAN, Paula M et al. A recoverable Pd nanocatalyst for selective semi-hydrogenation of alkynes: hydrogenation of benzyl-propargylamines as a challenging model. Green Chemistry, v. 16, p. 4566-4574, 2014Tradução . . Disponível em: https://doi.org/10.1039/c4gc00669k. Acesso em: 31 maio 2024.
    • APA

      Uberman, P. M., Costa, N. J. S., Philippot, K., Carmona, R. C., Santos, A. A. dos, & Rossi, L. M. (2014). A recoverable Pd nanocatalyst for selective semi-hydrogenation of alkynes: hydrogenation of benzyl-propargylamines as a challenging model. Green Chemistry, 16, 4566-4574. doi:10.1039/c4gc00669k
    • NLM

      Uberman PM, Costa NJS, Philippot K, Carmona RC, Santos AA dos, Rossi LM. A recoverable Pd nanocatalyst for selective semi-hydrogenation of alkynes: hydrogenation of benzyl-propargylamines as a challenging model [Internet]. Green Chemistry. 2014 ; 16 4566-4574.[citado 2024 maio 31 ] Available from: https://doi.org/10.1039/c4gc00669k
    • Vancouver

      Uberman PM, Costa NJS, Philippot K, Carmona RC, Santos AA dos, Rossi LM. A recoverable Pd nanocatalyst for selective semi-hydrogenation of alkynes: hydrogenation of benzyl-propargylamines as a challenging model [Internet]. Green Chemistry. 2014 ; 16 4566-4574.[citado 2024 maio 31 ] Available from: https://doi.org/10.1039/c4gc00669k
  • Source: Green Chemistry. Unidade: EESC

    Subjects: POLÍMEROS (MATERIAIS), POLIMERIZAÇÃO

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GANDINI, Alessandro e LACERDA, Talita Martins e CARVALHO, Antonio José Felix de. A straightforward double coupling of furan moieties onto epoxidized triglycerides: synthesis of monomers based on two renewable resources. Green Chemistry, v. 15, p. 1514-1519, 2013Tradução . . Disponível em: https://doi.org/10.1039/c3gc40358k. Acesso em: 31 maio 2024.
    • APA

      Gandini, A., Lacerda, T. M., & Carvalho, A. J. F. de. (2013). A straightforward double coupling of furan moieties onto epoxidized triglycerides: synthesis of monomers based on two renewable resources. Green Chemistry, 15, 1514-1519. doi:10.1039/c3gc40358k
    • NLM

      Gandini A, Lacerda TM, Carvalho AJF de. A straightforward double coupling of furan moieties onto epoxidized triglycerides: synthesis of monomers based on two renewable resources [Internet]. Green Chemistry. 2013 ; 15 1514-1519.[citado 2024 maio 31 ] Available from: https://doi.org/10.1039/c3gc40358k
    • Vancouver

      Gandini A, Lacerda TM, Carvalho AJF de. A straightforward double coupling of furan moieties onto epoxidized triglycerides: synthesis of monomers based on two renewable resources [Internet]. Green Chemistry. 2013 ; 15 1514-1519.[citado 2024 maio 31 ] Available from: https://doi.org/10.1039/c3gc40358k
  • Source: Green Chemistry. Unidade: IQSC

    Subjects: QUÍMICA VERDE, BAGAÇOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      VELLEJOS, María Evangelina et al. Low liquid-solid ratio (LSR) hot water pretreatment of sugane bagasse. Green Chemistry, v. 14, n. 7, p. 1982-1989, 2012Tradução . . Disponível em: https://doi.org/10.1039/c21gc35397k. Acesso em: 31 maio 2024.
    • APA

      Vellejos, M. E., Zambon, M. D., Area, M. C., & Curvelo, A. A. da S. (2012). Low liquid-solid ratio (LSR) hot water pretreatment of sugane bagasse. Green Chemistry, 14( 7), 1982-1989. doi:10.1039/c21gc35397k
    • NLM

      Vellejos ME, Zambon MD, Area MC, Curvelo AA da S. Low liquid-solid ratio (LSR) hot water pretreatment of sugane bagasse [Internet]. Green Chemistry. 2012 ; 14( 7): 1982-1989.[citado 2024 maio 31 ] Available from: https://doi.org/10.1039/c21gc35397k
    • Vancouver

      Vellejos ME, Zambon MD, Area MC, Curvelo AA da S. Low liquid-solid ratio (LSR) hot water pretreatment of sugane bagasse [Internet]. Green Chemistry. 2012 ; 14( 7): 1982-1989.[citado 2024 maio 31 ] Available from: https://doi.org/10.1039/c21gc35397k
  • Source: Green Chemistry. Unidade: IFSC

    Subjects: RESSONÂNCIA MAGNÉTICA NUCLEAR, DIÓXIDO DE CARBONO

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PEREIRA, Fernanda Stuani et al. A comparative solid state 'ANTPOT. 13 C' NMR and thermal study of 'CO IND. 2' capture by amidines PMDBD and DBN. Green Chemistry, v. 13, n. 8, p. 2146-2153, 2011Tradução . . Disponível em: https://doi.org/10.1039/c1gc15457e. Acesso em: 31 maio 2024.
    • APA

      Pereira, F. S., Agostini, D. L. da S., Espírito Santo, R. D. do, Azevêdo, E. R. de, Bonagamba, T. J., Job, A. E., & González, E. R. P. (2011). A comparative solid state 'ANTPOT. 13 C' NMR and thermal study of 'CO IND. 2' capture by amidines PMDBD and DBN. Green Chemistry, 13( 8), 2146-2153. doi:10.1039/c1gc15457e
    • NLM

      Pereira FS, Agostini DL da S, Espírito Santo RD do, Azevêdo ER de, Bonagamba TJ, Job AE, González ERP. A comparative solid state 'ANTPOT. 13 C' NMR and thermal study of 'CO IND. 2' capture by amidines PMDBD and DBN [Internet]. Green Chemistry. 2011 ; 13( 8): 2146-2153.[citado 2024 maio 31 ] Available from: https://doi.org/10.1039/c1gc15457e
    • Vancouver

      Pereira FS, Agostini DL da S, Espírito Santo RD do, Azevêdo ER de, Bonagamba TJ, Job AE, González ERP. A comparative solid state 'ANTPOT. 13 C' NMR and thermal study of 'CO IND. 2' capture by amidines PMDBD and DBN [Internet]. Green Chemistry. 2011 ; 13( 8): 2146-2153.[citado 2024 maio 31 ] Available from: https://doi.org/10.1039/c1gc15457e

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024