Filtros : "Journal of Materials Chemistry A" Limpar

Filtros



Refine with date range


  • Source: Journal of Materials Chemistry A. Unidade: IQ

    Subjects: ELETROCATÁLISE, RUTÊNIO, CATALISADORES

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      YING, Jie et al. Recent advances in Ru-based electrocatalysts for oxygen evolution reaction. Journal of Materials Chemistry A, v. 11, n. 4, p. 1634-1650, 2023Tradução . . Disponível em: https://doi.org/10.1039/D2TA07196G. Acesso em: 29 maio 2024.
    • APA

      Ying, J., Chen, J. -B., Xiao, Y. Y., Torresi, S. I. C. de, Ozoemena, K. I., & Yang, X. -Y. (2023). Recent advances in Ru-based electrocatalysts for oxygen evolution reaction. Journal of Materials Chemistry A, 11( 4), 1634-1650. doi:10.1039/D2TA07196G
    • NLM

      Ying J, Chen J-B, Xiao YY, Torresi SIC de, Ozoemena KI, Yang X-Y. Recent advances in Ru-based electrocatalysts for oxygen evolution reaction [Internet]. Journal of Materials Chemistry A. 2023 ; 11( 4): 1634-1650.[citado 2024 maio 29 ] Available from: https://doi.org/10.1039/D2TA07196G
    • Vancouver

      Ying J, Chen J-B, Xiao YY, Torresi SIC de, Ozoemena KI, Yang X-Y. Recent advances in Ru-based electrocatalysts for oxygen evolution reaction [Internet]. Journal of Materials Chemistry A. 2023 ; 11( 4): 1634-1650.[citado 2024 maio 29 ] Available from: https://doi.org/10.1039/D2TA07196G
  • Source: Journal of Materials Chemistry A. Unidade: IQ

    Subjects: FONTES ALTERNATIVAS DE ENERGIA, CRISE ENERGÉTICA, POLUIÇÃO AMBIENTAL

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SILVA, Matheus Ireno da et al. Recent progress in water-splitting and supercapacitor electrode materials based on MOF-derived sulfides. Journal of Materials Chemistry A, v. 10, n. 2, p. 430–474, 2022Tradução . . Disponível em: https://doi.org/10.1039/d1ta05927k. Acesso em: 29 maio 2024.
    • APA

      Silva, M. I. da, Machado, Í. R., Toma, H. E., Araki, K., Angnes, L., & Gonçalves, J. M. (2022). Recent progress in water-splitting and supercapacitor electrode materials based on MOF-derived sulfides. Journal of Materials Chemistry A, 10( 2), 430–474. doi:10.1039/d1ta05927k
    • NLM

      Silva MI da, Machado ÍR, Toma HE, Araki K, Angnes L, Gonçalves JM. Recent progress in water-splitting and supercapacitor electrode materials based on MOF-derived sulfides [Internet]. Journal of Materials Chemistry A. 2022 ; 10( 2): 430–474.[citado 2024 maio 29 ] Available from: https://doi.org/10.1039/d1ta05927k
    • Vancouver

      Silva MI da, Machado ÍR, Toma HE, Araki K, Angnes L, Gonçalves JM. Recent progress in water-splitting and supercapacitor electrode materials based on MOF-derived sulfides [Internet]. Journal of Materials Chemistry A. 2022 ; 10( 2): 430–474.[citado 2024 maio 29 ] Available from: https://doi.org/10.1039/d1ta05927k
  • Source: Journal of Materials Chemistry A. Unidades: FFCLRP, IQSC

    Subjects: FÍSICO-QUÍMICA, ELETRÓLITOS, LÍTIO

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LOURENÇO, Tuanan da Costa et al. Tuning aprotic solvent properties with long alkyl chain ionic liquid for lithium-based electrolytes. Journal of Materials Chemistry A, v. 10, 2022Tradução . . Disponível em: https://doi.org/10.1039/D1TA10592B. Acesso em: 29 maio 2024.
    • APA

      Lourenço, T. da C., Barros, L. M. S., Anchieta, C. G., Nepel, T. C. M., Júlio, J. P. de O., Dias, L. G., et al. (2022). Tuning aprotic solvent properties with long alkyl chain ionic liquid for lithium-based electrolytes. Journal of Materials Chemistry A, 10. doi:10.1039/D1TA10592B
    • NLM

      Lourenço T da C, Barros LMS, Anchieta CG, Nepel TCM, Júlio JP de O, Dias LG, Maciel Filho R, Doubek G, Silva JLF da. Tuning aprotic solvent properties with long alkyl chain ionic liquid for lithium-based electrolytes [Internet]. Journal of Materials Chemistry A. 2022 ; 10[citado 2024 maio 29 ] Available from: https://doi.org/10.1039/D1TA10592B
    • Vancouver

      Lourenço T da C, Barros LMS, Anchieta CG, Nepel TCM, Júlio JP de O, Dias LG, Maciel Filho R, Doubek G, Silva JLF da. Tuning aprotic solvent properties with long alkyl chain ionic liquid for lithium-based electrolytes [Internet]. Journal of Materials Chemistry A. 2022 ; 10[citado 2024 maio 29 ] Available from: https://doi.org/10.1039/D1TA10592B
  • Source: Journal of Materials Chemistry A. Unidade: IQSC

    Subjects: NÍQUEL, CATALISADORES

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SOUZA, Alan S. et al. Nickel pyrophosphate combined with graphene nanoribbon used as efficient catalyst for OER. Journal of Materials Chemistry A, v. 9, p. 11255–11267, 2021Tradução . . Disponível em: https://doi.org/10.1039/D1TA00817J. Acesso em: 29 maio 2024.
    • APA

      Souza, A. S., Bezerra, L. S., Cardoso, E. S. F., Guilherme Vilalba Fortunato,, & Maia, G. (2021). Nickel pyrophosphate combined with graphene nanoribbon used as efficient catalyst for OER. Journal of Materials Chemistry A, 9, 11255–11267. doi:10.1039/D1TA00817J
    • NLM

      Souza AS, Bezerra LS, Cardoso ESF, Guilherme Vilalba Fortunato, Maia G. Nickel pyrophosphate combined with graphene nanoribbon used as efficient catalyst for OER [Internet]. Journal of Materials Chemistry A. 2021 ; 9 11255–11267.[citado 2024 maio 29 ] Available from: https://doi.org/10.1039/D1TA00817J
    • Vancouver

      Souza AS, Bezerra LS, Cardoso ESF, Guilherme Vilalba Fortunato, Maia G. Nickel pyrophosphate combined with graphene nanoribbon used as efficient catalyst for OER [Internet]. Journal of Materials Chemistry A. 2021 ; 9 11255–11267.[citado 2024 maio 29 ] Available from: https://doi.org/10.1039/D1TA00817J
  • Source: Journal of Materials Chemistry A. Unidade: IQ

    Subjects: DEPÓSITOS DE COMBUSTÍVEL FÓSSIL, ENERGIA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GONÇALVES, Josué Martins et al. Multifunctional spinel MnCo2O4 based materials for energy storage and conversion: a review on emerging trends, recent developments and future perspectives. Journal of Materials Chemistry A, v. 9, n. 6, p. 3095–3124, 2021Tradução . . Disponível em: https://doi.org/10.1039/d0ta11129e. Acesso em: 29 maio 2024.
    • APA

      Gonçalves, J. M., Silva, M. N. T., Naik, K. K., Martins, P. R., Rocha, D. P., Nossol, E., et al. (2021). Multifunctional spinel MnCo2O4 based materials for energy storage and conversion: a review on emerging trends, recent developments and future perspectives. Journal of Materials Chemistry A, 9( 6), 3095–3124. doi:10.1039/d0ta11129e
    • NLM

      Gonçalves JM, Silva MNT, Naik KK, Martins PR, Rocha DP, Nossol E, Munoz RAA, Angnes L, Rout CS. Multifunctional spinel MnCo2O4 based materials for energy storage and conversion: a review on emerging trends, recent developments and future perspectives [Internet]. Journal of Materials Chemistry A. 2021 ; 9( 6): 3095–3124.[citado 2024 maio 29 ] Available from: https://doi.org/10.1039/d0ta11129e
    • Vancouver

      Gonçalves JM, Silva MNT, Naik KK, Martins PR, Rocha DP, Nossol E, Munoz RAA, Angnes L, Rout CS. Multifunctional spinel MnCo2O4 based materials for energy storage and conversion: a review on emerging trends, recent developments and future perspectives [Internet]. Journal of Materials Chemistry A. 2021 ; 9( 6): 3095–3124.[citado 2024 maio 29 ] Available from: https://doi.org/10.1039/d0ta11129e
  • Source: Journal of Materials Chemistry A. Unidade: IFSC

    Subjects: PÓS CERÂMICOS, NANOPARTÍCULAS, CRISTALIZAÇÃO

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      KOHLRAUSCH, Emerson C. et al. A high-throughput, solvent free method for dispersing metal atoms directly onto supports. Journal of Materials Chemistry A, v. 9, n. 47, p. 26676-26679, 2021Tradução . . Disponível em: https://doi.org/10.1039/d1ta08372d. Acesso em: 29 maio 2024.
    • APA

      Kohlrausch, E. C., Centurion, H. A., Lodge, R. W., Luo, X., Slater, T., Santos, M. J. L., et al. (2021). A high-throughput, solvent free method for dispersing metal atoms directly onto supports. Journal of Materials Chemistry A, 9( 47), 26676-26679. doi:10.1039/d1ta08372d
    • NLM

      Kohlrausch EC, Centurion HA, Lodge RW, Luo X, Slater T, Santos MJL, Ling S, Mastelaro VR, Cliffe MJ, Gonçalves RV, Fernandes JA. A high-throughput, solvent free method for dispersing metal atoms directly onto supports [Internet]. Journal of Materials Chemistry A. 2021 ; 9( 47): 26676-26679.[citado 2024 maio 29 ] Available from: https://doi.org/10.1039/d1ta08372d
    • Vancouver

      Kohlrausch EC, Centurion HA, Lodge RW, Luo X, Slater T, Santos MJL, Ling S, Mastelaro VR, Cliffe MJ, Gonçalves RV, Fernandes JA. A high-throughput, solvent free method for dispersing metal atoms directly onto supports [Internet]. Journal of Materials Chemistry A. 2021 ; 9( 47): 26676-26679.[citado 2024 maio 29 ] Available from: https://doi.org/10.1039/d1ta08372d
  • Source: Journal of Materials Chemistry A. Unidade: IQ

    Subjects: ELETRODO, QUÍMICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GONÇALVES, Josué Martins et al. Trimetallic oxides/hydroxides as hybrid supercapacitor electrode materials: a review. Journal of Materials Chemistry A, v. 8, p. 10534–10570, 2020Tradução . . Disponível em: https://doi.org/10.1039/d0ta02939d. Acesso em: 29 maio 2024.
    • APA

      Gonçalves, J. M., Silva, M. I. da, Toma, H. E., Angnes, L., Martins, P. R., & Araki, K. (2020). Trimetallic oxides/hydroxides as hybrid supercapacitor electrode materials: a review. Journal of Materials Chemistry A, 8, 10534–10570. doi:10.1039/d0ta02939d
    • NLM

      Gonçalves JM, Silva MI da, Toma HE, Angnes L, Martins PR, Araki K. Trimetallic oxides/hydroxides as hybrid supercapacitor electrode materials: a review [Internet]. Journal of Materials Chemistry A. 2020 ; 8 10534–10570.[citado 2024 maio 29 ] Available from: https://doi.org/10.1039/d0ta02939d
    • Vancouver

      Gonçalves JM, Silva MI da, Toma HE, Angnes L, Martins PR, Araki K. Trimetallic oxides/hydroxides as hybrid supercapacitor electrode materials: a review [Internet]. Journal of Materials Chemistry A. 2020 ; 8 10534–10570.[citado 2024 maio 29 ] Available from: https://doi.org/10.1039/d0ta02939d
  • Source: Journal of Materials Chemistry A. Unidade: IQ

    Subjects: NANOPARTÍCULAS, METAIS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      OLIVEIRA, Paulo Filho Marques de et al. Challenges and opportunities in the bottom-up mechanochemical synthesis of noble metal nanoparticles. Journal of Materials Chemistry A, v. 8, p. 16114–16141, 2020Tradução . . Disponível em: https://doi.org/10.1039/d0ta05183g. Acesso em: 29 maio 2024.
    • APA

      Oliveira, P. F. M. de, Torresi, R. M., Emmerling, F., & Camargo, P. H. C. de. (2020). Challenges and opportunities in the bottom-up mechanochemical synthesis of noble metal nanoparticles. Journal of Materials Chemistry A, 8, 16114–16141. doi:10.1039/d0ta05183g
    • NLM

      Oliveira PFM de, Torresi RM, Emmerling F, Camargo PHC de. Challenges and opportunities in the bottom-up mechanochemical synthesis of noble metal nanoparticles [Internet]. Journal of Materials Chemistry A. 2020 ; 8 16114–16141.[citado 2024 maio 29 ] Available from: https://doi.org/10.1039/d0ta05183g
    • Vancouver

      Oliveira PFM de, Torresi RM, Emmerling F, Camargo PHC de. Challenges and opportunities in the bottom-up mechanochemical synthesis of noble metal nanoparticles [Internet]. Journal of Materials Chemistry A. 2020 ; 8 16114–16141.[citado 2024 maio 29 ] Available from: https://doi.org/10.1039/d0ta05183g
  • Source: Journal of Materials Chemistry A. Unidade: IQSC

    Subjects: ELETROQUÍMICA, NANOPARTÍCULAS, ENERGIA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      KHALID, Mohmmad et al. Trifunctional catalytic activities of trimetallic FeCoNi alloy nanoparticles embedded in a carbon shell for efficient overall water splitting. Journal of Materials Chemistry A, v. 8, p. 9021-9031, 2020Tradução . . Disponível em: https://doi.org/10.1039/C9TA13637A. Acesso em: 29 maio 2024.
    • APA

      Khalid, M., Honorato, A. M. B., Tremiliosi Filho, G., & Varela, H. (2020). Trifunctional catalytic activities of trimetallic FeCoNi alloy nanoparticles embedded in a carbon shell for efficient overall water splitting. Journal of Materials Chemistry A, 8, 9021-9031. doi:10.1039/C9TA13637A
    • NLM

      Khalid M, Honorato AMB, Tremiliosi Filho G, Varela H. Trifunctional catalytic activities of trimetallic FeCoNi alloy nanoparticles embedded in a carbon shell for efficient overall water splitting [Internet]. Journal of Materials Chemistry A. 2020 ; 8 9021-9031.[citado 2024 maio 29 ] Available from: https://doi.org/10.1039/C9TA13637A
    • Vancouver

      Khalid M, Honorato AMB, Tremiliosi Filho G, Varela H. Trifunctional catalytic activities of trimetallic FeCoNi alloy nanoparticles embedded in a carbon shell for efficient overall water splitting [Internet]. Journal of Materials Chemistry A. 2020 ; 8 9021-9031.[citado 2024 maio 29 ] Available from: https://doi.org/10.1039/C9TA13637A
  • Source: Journal of Materials Chemistry A. Unidade: IQ

    Subjects: POLUIÇÃO AMBIENTAL, VANÁDIO

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GONÇALVES, Josué Martins et al. Vanadium-containing electro and photocatalysts for the oxygen evolution reaction: a review. Journal of Materials Chemistry A, v. 8, p. 2171-2206, 2020Tradução . . Disponível em: https://doi.org/10.1039/c9ta10857b. Acesso em: 29 maio 2024.
    • APA

      Gonçalves, J. M., Silva, M. I., Angnes, L., & Araki, K. (2020). Vanadium-containing electro and photocatalysts for the oxygen evolution reaction: a review. Journal of Materials Chemistry A, 8, 2171-2206. doi:10.1039/c9ta10857b
    • NLM

      Gonçalves JM, Silva MI, Angnes L, Araki K. Vanadium-containing electro and photocatalysts for the oxygen evolution reaction: a review [Internet]. Journal of Materials Chemistry A. 2020 ; 8 2171-2206.[citado 2024 maio 29 ] Available from: https://doi.org/10.1039/c9ta10857b
    • Vancouver

      Gonçalves JM, Silva MI, Angnes L, Araki K. Vanadium-containing electro and photocatalysts for the oxygen evolution reaction: a review [Internet]. Journal of Materials Chemistry A. 2020 ; 8 2171-2206.[citado 2024 maio 29 ] Available from: https://doi.org/10.1039/c9ta10857b
  • Source: Journal of Materials Chemistry A. Unidade: IFSC

    Subjects: DIFRAÇÃO POR RAIOS X, CÉLULAS SOLARES, MICROSCOPIA ELETRÔNICA DE VARREDURA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MARCHEZI, Paulo Ernesto et al. Degradation mechanisms in mixed-cation and mixed-halide CsxFA1-xPb(BryI1-y)3 perovskite films under ambient conditions. Journal of Materials Chemistry A, v. 8, n. 18, p. 9302-9312, 2020Tradução . . Disponível em: https://doi.org/10.1039/d0ta01201g. Acesso em: 29 maio 2024.
    • APA

      Marchezi, P. E., Therézio, E. M., Szostak, R., Loureiro, H. C., Bruening, K., Gold-Parker, A., et al. (2020). Degradation mechanisms in mixed-cation and mixed-halide CsxFA1-xPb(BryI1-y)3 perovskite films under ambient conditions. Journal of Materials Chemistry A, 8( 18), 9302-9312. doi:10.1039/d0ta01201g
    • NLM

      Marchezi PE, Therézio EM, Szostak R, Loureiro HC, Bruening K, Gold-Parker A, Melo Junior MA de, Tassone CJ, Tolentino HCN, Toney MF, Nogueira AF. Degradation mechanisms in mixed-cation and mixed-halide CsxFA1-xPb(BryI1-y)3 perovskite films under ambient conditions [Internet]. Journal of Materials Chemistry A. 2020 ; 8( 18): 9302-9312.[citado 2024 maio 29 ] Available from: https://doi.org/10.1039/d0ta01201g
    • Vancouver

      Marchezi PE, Therézio EM, Szostak R, Loureiro HC, Bruening K, Gold-Parker A, Melo Junior MA de, Tassone CJ, Tolentino HCN, Toney MF, Nogueira AF. Degradation mechanisms in mixed-cation and mixed-halide CsxFA1-xPb(BryI1-y)3 perovskite films under ambient conditions [Internet]. Journal of Materials Chemistry A. 2020 ; 8( 18): 9302-9312.[citado 2024 maio 29 ] Available from: https://doi.org/10.1039/d0ta01201g
  • Source: Journal of Materials Chemistry A. Unidade: IQ

    Subjects: NANOPARTÍCULAS, CATÁLISE

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      RODRIGUES, Thenner Silva e SILLVA, Anderson G. M e CAMARGO, Pedro Henrique Cury de. Nanocatalysis by noble metal nanoparticles: controlled synthesis for the optimization and understanding of activities. Journal of Materials Chemistry A, v. 2019, n. 7, p. 5857-5874, 2019Tradução . . Disponível em: https://doi.org/10.1039/c9ta00074g. Acesso em: 29 maio 2024.
    • APA

      Rodrigues, T. S., Sillva, A. G. M., & Camargo, P. H. C. de. (2019). Nanocatalysis by noble metal nanoparticles: controlled synthesis for the optimization and understanding of activities. Journal of Materials Chemistry A, 2019( 7), 5857-5874. doi:10.1039/c9ta00074g
    • NLM

      Rodrigues TS, Sillva AGM, Camargo PHC de. Nanocatalysis by noble metal nanoparticles: controlled synthesis for the optimization and understanding of activities [Internet]. Journal of Materials Chemistry A. 2019 ; 2019( 7): 5857-5874.[citado 2024 maio 29 ] Available from: https://doi.org/10.1039/c9ta00074g
    • Vancouver

      Rodrigues TS, Sillva AGM, Camargo PHC de. Nanocatalysis by noble metal nanoparticles: controlled synthesis for the optimization and understanding of activities [Internet]. Journal of Materials Chemistry A. 2019 ; 2019( 7): 5857-5874.[citado 2024 maio 29 ] Available from: https://doi.org/10.1039/c9ta00074g
  • Source: Journal of Materials Chemistry A. Unidade: IQ

    Subjects: NANOPARTÍCULAS, MANGANÊS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ZHU, kai et al. Investigating the effect of MnO2 band gap in hybrid MnO2–Au materials over the SPR-mediated activities under visible light. Journal of Materials Chemistry A, v. 7, p. 925-931, 2019Tradução . . Disponível em: https://doi.org/10.1039/C8TA09785B. Acesso em: 29 maio 2024.
    • APA

      Zhu, kai, Wang, C., Camargo, P. H. C. de, & Wang, J. (2019). Investigating the effect of MnO2 band gap in hybrid MnO2–Au materials over the SPR-mediated activities under visible light. Journal of Materials Chemistry A, 7, 925-931. doi:10.1039/C8TA09785B
    • NLM

      Zhu kai, Wang C, Camargo PHC de, Wang J. Investigating the effect of MnO2 band gap in hybrid MnO2–Au materials over the SPR-mediated activities under visible light [Internet]. Journal of Materials Chemistry A. 2019 ; 7 925-931.[citado 2024 maio 29 ] Available from: https://doi.org/10.1039/C8TA09785B
    • Vancouver

      Zhu kai, Wang C, Camargo PHC de, Wang J. Investigating the effect of MnO2 band gap in hybrid MnO2–Au materials over the SPR-mediated activities under visible light [Internet]. Journal of Materials Chemistry A. 2019 ; 7 925-931.[citado 2024 maio 29 ] Available from: https://doi.org/10.1039/C8TA09785B
  • Source: Journal of Materials Chemistry A. Unidade: IQSC

    Subjects: ELETROQUÍMICA, NANOELETRÔNICA, GELATINA, EXAMES MÉDICOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CRESPILHO, Frank Nelson et al. Non-corrosive, low-toxicity gel-based microbattery from organic and organometallic molecules. Journal of Materials Chemistry A, v. 2019, n. 7, p. 24784-24787, 2019Tradução . . Disponível em: https://doi.org/10.1039/C9TA08685D. Acesso em: 29 maio 2024.
    • APA

      Crespilho, F. N., Sedenho, G. C., De Porcellinis, D., Kerr, E., Granados-Focil, S., Gordon, R. G., & Aziz, M. J. (2019). Non-corrosive, low-toxicity gel-based microbattery from organic and organometallic molecules. Journal of Materials Chemistry A, 2019( 7), 24784-24787. doi:10.1039/C9TA08685D
    • NLM

      Crespilho FN, Sedenho GC, De Porcellinis D, Kerr E, Granados-Focil S, Gordon RG, Aziz MJ. Non-corrosive, low-toxicity gel-based microbattery from organic and organometallic molecules [Internet]. Journal of Materials Chemistry A. 2019 ; 2019( 7): 24784-24787.[citado 2024 maio 29 ] Available from: https://doi.org/10.1039/C9TA08685D
    • Vancouver

      Crespilho FN, Sedenho GC, De Porcellinis D, Kerr E, Granados-Focil S, Gordon RG, Aziz MJ. Non-corrosive, low-toxicity gel-based microbattery from organic and organometallic molecules [Internet]. Journal of Materials Chemistry A. 2019 ; 2019( 7): 24784-24787.[citado 2024 maio 29 ] Available from: https://doi.org/10.1039/C9TA08685D
  • Source: Journal of Materials Chemistry A. Unidade: IQSC

    Assunto: CÉLULAS A COMBUSTÍVEL

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BIANCOLLI, Ana Laura Gonçalves et al. ETFE-based anion-exchange membrane ionomer powders for alkaline membrane fuel cells: a first performance comparison of head-group chemistry. Journal of Materials Chemistry A, v. 6, p. 24330-24341, 2018Tradução . . Disponível em: https://doi.org/10.1039/c8ta08309f. Acesso em: 29 maio 2024.
    • APA

      Biancolli, A. L. G., Herranz, M., Wang, L., Stehlíková, G., Bance-Soualhi, R., Ponce-González, J., et al. (2018). ETFE-based anion-exchange membrane ionomer powders for alkaline membrane fuel cells: a first performance comparison of head-group chemistry. Journal of Materials Chemistry A, 6, 24330-24341. doi:10.1039/c8ta08309f
    • NLM

      Biancolli ALG, Herranz M, Wang L, Stehlíková G, Bance-Soualhi R, Ponce-González J, Ocon P, Ticianelli EA, Whelligan DK, Varcoe JR, Santiago EI. ETFE-based anion-exchange membrane ionomer powders for alkaline membrane fuel cells: a first performance comparison of head-group chemistry [Internet]. Journal of Materials Chemistry A. 2018 ;6 24330-24341.[citado 2024 maio 29 ] Available from: https://doi.org/10.1039/c8ta08309f
    • Vancouver

      Biancolli ALG, Herranz M, Wang L, Stehlíková G, Bance-Soualhi R, Ponce-González J, Ocon P, Ticianelli EA, Whelligan DK, Varcoe JR, Santiago EI. ETFE-based anion-exchange membrane ionomer powders for alkaline membrane fuel cells: a first performance comparison of head-group chemistry [Internet]. Journal of Materials Chemistry A. 2018 ;6 24330-24341.[citado 2024 maio 29 ] Available from: https://doi.org/10.1039/c8ta08309f
  • Source: Journal of Materials Chemistry A. Unidade: IQSC

    Subjects: ELETROCATÁLISE, MATERIAIS NANOESTRUTURADOS

    PrivadoAcesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      KHALID, Mohd et al. Uniformly self-decorated 'CO IND.3'O' IND.4' nanoparticles on N, S co-doped carbon layers derived from a camphor sulfonic acid and metal – organic framework hybrid as an oxygen evolution electrocatalyst. Journal of Materials Chemistry A, v. 6, p. 12106-12114, 2018Tradução . . Disponível em: http://pubs-rsc-org.ez67.periodicos.capes.gov.br/en/content/articlepdf/2018/ta/c8ta02926a?page=search. Acesso em: 29 maio 2024.
    • APA

      Khalid, M., Honorato, A. M. B., Ticianelli, E. A., & Varela, H. (2018). Uniformly self-decorated 'CO IND.3'O' IND.4' nanoparticles on N, S co-doped carbon layers derived from a camphor sulfonic acid and metal – organic framework hybrid as an oxygen evolution electrocatalyst. Journal of Materials Chemistry A, 6, 12106-12114. doi:10.1039/c8ta02926a
    • NLM

      Khalid M, Honorato AMB, Ticianelli EA, Varela H. Uniformly self-decorated 'CO IND.3'O' IND.4' nanoparticles on N, S co-doped carbon layers derived from a camphor sulfonic acid and metal – organic framework hybrid as an oxygen evolution electrocatalyst [Internet]. Journal of Materials Chemistry A. 2018 ;6 12106-12114.[citado 2024 maio 29 ] Available from: http://pubs-rsc-org.ez67.periodicos.capes.gov.br/en/content/articlepdf/2018/ta/c8ta02926a?page=search
    • Vancouver

      Khalid M, Honorato AMB, Ticianelli EA, Varela H. Uniformly self-decorated 'CO IND.3'O' IND.4' nanoparticles on N, S co-doped carbon layers derived from a camphor sulfonic acid and metal – organic framework hybrid as an oxygen evolution electrocatalyst [Internet]. Journal of Materials Chemistry A. 2018 ;6 12106-12114.[citado 2024 maio 29 ] Available from: http://pubs-rsc-org.ez67.periodicos.capes.gov.br/en/content/articlepdf/2018/ta/c8ta02926a?page=search
  • Source: Journal of Materials Chemistry A. Unidade: IQSC

    Assunto: FÓSFORO

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      KHALID, Mohd e VARELA, Hamilton. A general potentiodynamic approach for red phosphorus and sulfur nanodot incorporation on reduced graphene oxide sheets: metal-free and binder-free electrodes for supercapacitor and hydrogen evolution activities. Journal of Materials Chemistry A, n. 7, p. 3141-3150, 2018Tradução . . Disponível em: https://doi.org/10.1039/C7TA10591F. Acesso em: 29 maio 2024.
    • APA

      Khalid, M., & Varela, H. (2018). A general potentiodynamic approach for red phosphorus and sulfur nanodot incorporation on reduced graphene oxide sheets: metal-free and binder-free electrodes for supercapacitor and hydrogen evolution activities. Journal of Materials Chemistry A, ( 7), 3141-3150. doi:10.1039/C7TA10591F
    • NLM

      Khalid M, Varela H. A general potentiodynamic approach for red phosphorus and sulfur nanodot incorporation on reduced graphene oxide sheets: metal-free and binder-free electrodes for supercapacitor and hydrogen evolution activities [Internet]. Journal of Materials Chemistry A. 2018 ;( 7): 3141-3150.[citado 2024 maio 29 ] Available from: https://doi.org/10.1039/C7TA10591F
    • Vancouver

      Khalid M, Varela H. A general potentiodynamic approach for red phosphorus and sulfur nanodot incorporation on reduced graphene oxide sheets: metal-free and binder-free electrodes for supercapacitor and hydrogen evolution activities [Internet]. Journal of Materials Chemistry A. 2018 ;( 7): 3141-3150.[citado 2024 maio 29 ] Available from: https://doi.org/10.1039/C7TA10591F
  • Source: Journal of Materials Chemistry A. Unidade: IQ

    Subjects: NANOPARTÍCULAS, PRATA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PAPA, Letizia et al. Supports matter: unraveling the role of charge transfer in the plasmonic catalytic activity of silver nanoparticles. Journal of Materials Chemistry A, v. 5, p. 11720-11729: + supplementary materials (s1-s6), 2017Tradução . . Disponível em: https://doi.org/10.1039/c6ta10122d. Acesso em: 29 maio 2024.
    • APA

      Papa, L., Freitas, I. C. de, Geonmonond, R. S., Aquino, C. B. de, Pieretti, J. C., Domingues, S. H., et al. (2017). Supports matter: unraveling the role of charge transfer in the plasmonic catalytic activity of silver nanoparticles. Journal of Materials Chemistry A, 5, 11720-11729: + supplementary materials (s1-s6). doi:10.1039/c6ta10122d
    • NLM

      Papa L, Freitas IC de, Geonmonond RS, Aquino CB de, Pieretti JC, Domingues SH, Ando RA, Camargo PHC de. Supports matter: unraveling the role of charge transfer in the plasmonic catalytic activity of silver nanoparticles [Internet]. Journal of Materials Chemistry A. 2017 ; 5 11720-11729: + supplementary materials (s1-s6).[citado 2024 maio 29 ] Available from: https://doi.org/10.1039/c6ta10122d
    • Vancouver

      Papa L, Freitas IC de, Geonmonond RS, Aquino CB de, Pieretti JC, Domingues SH, Ando RA, Camargo PHC de. Supports matter: unraveling the role of charge transfer in the plasmonic catalytic activity of silver nanoparticles [Internet]. Journal of Materials Chemistry A. 2017 ; 5 11720-11729: + supplementary materials (s1-s6).[citado 2024 maio 29 ] Available from: https://doi.org/10.1039/c6ta10122d
  • Source: Journal of Materials Chemistry A. Unidade: IFSC

    Subjects: DIELÉTRICOS, MATERIAIS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      DONG, Wen et al. Colossal permittivity with ultralow dielectric loss in In + Ta co-doped rutile TiO2. Journal of Materials Chemistry A, v. 5, n. 11, p. 5436-5441, 2017Tradução . . Disponível em: https://doi.org/10.1039/c6ta08337d. Acesso em: 29 maio 2024.
    • APA

      Dong, W., Hu, W., Frankcombe, T. J., Chen, D., Zhou, C., Fu, Z., et al. (2017). Colossal permittivity with ultralow dielectric loss in In + Ta co-doped rutile TiO2. Journal of Materials Chemistry A, 5( 11), 5436-5441. doi:10.1039/c6ta08337d
    • NLM

      Dong W, Hu W, Frankcombe TJ, Chen D, Zhou C, Fu Z, Cândido L, Hai G-Q, Chen H, Li Y, Withers RL, Liu Y. Colossal permittivity with ultralow dielectric loss in In + Ta co-doped rutile TiO2 [Internet]. Journal of Materials Chemistry A. 2017 ; 5( 11): 5436-5441.[citado 2024 maio 29 ] Available from: https://doi.org/10.1039/c6ta08337d
    • Vancouver

      Dong W, Hu W, Frankcombe TJ, Chen D, Zhou C, Fu Z, Cândido L, Hai G-Q, Chen H, Li Y, Withers RL, Liu Y. Colossal permittivity with ultralow dielectric loss in In + Ta co-doped rutile TiO2 [Internet]. Journal of Materials Chemistry A. 2017 ; 5( 11): 5436-5441.[citado 2024 maio 29 ] Available from: https://doi.org/10.1039/c6ta08337d
  • Source: Journal of Materials Chemistry A. Unidade: EESC

    Subjects: MATERIAIS NANOESTRUTURADOS, CELULOSE, QUITOSANA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GRANDE, Rafael et al. Continuous microfiber drawing by interfacial charge complexation between anionic cellulose nanofibers and cationic chitosan. Journal of Materials Chemistry A, n. Ju 2017, p. 13098-13103, 2017Tradução . . Disponível em: https://doi.org/10.1039/c7ta02467c. Acesso em: 29 maio 2024.
    • APA

      Grande, R., Trovatti, E., Carvalho, A. J. F., & Gandini, A. (2017). Continuous microfiber drawing by interfacial charge complexation between anionic cellulose nanofibers and cationic chitosan. Journal of Materials Chemistry A, ( Ju 2017), 13098-13103. doi:10.1039/c7ta02467c
    • NLM

      Grande R, Trovatti E, Carvalho AJF, Gandini A. Continuous microfiber drawing by interfacial charge complexation between anionic cellulose nanofibers and cationic chitosan [Internet]. Journal of Materials Chemistry A. 2017 ;( Ju 2017): 13098-13103.[citado 2024 maio 29 ] Available from: https://doi.org/10.1039/c7ta02467c
    • Vancouver

      Grande R, Trovatti E, Carvalho AJF, Gandini A. Continuous microfiber drawing by interfacial charge complexation between anionic cellulose nanofibers and cationic chitosan [Internet]. Journal of Materials Chemistry A. 2017 ;( Ju 2017): 13098-13103.[citado 2024 maio 29 ] Available from: https://doi.org/10.1039/c7ta02467c

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024